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LETTER TO THE EDITOR 

Non-linear wave equations in a curved background space 

P M Radmore and G Stephenson 
Department of Mathematics, Imperial College, London, UK 

Received 9 May 1978 

Abstract. Derrick's theorem concerning the existence of soliton-like solutions of non- 
linear scalar wave equations in Minkowski space is extended to the curved background 
space exterior to a charged, non-rotating black hole. 

In a recent series of pap.ers (Rowan and Stephenson, 1976a, b, 1977, Rowan 1977, 
Radmore 1978) solutions of the Klein-Gordon scalar wave equation in curved back- 
ground spaces were obtained using Liouville-Green techniques. These solutions were 
related to the infall of baryons into black holes. We now consider whether it is 
possible to have soliton-like solutions of the non-linear Klein-Gordon equation 
containing self-interaction terms in the space exterior to a charged, non-rotating black 
hole as described by the Reissner-Nordstrom metric. It is well-known (Derrick 1964) 
that if @ is a scalar field in one time and D space dimensions satisfying the non-linear 
equation 

V2@= -4 f'(@) a'@ 
at2 
-- 

derivable from the variational principle 

(2) 

then for D 3 2 and f(@)3 0 the only non-singular time-independent solutions are the 
vacuum (or ground) states for which f ( @ )  = 0. This result, however, was established 
only in Minkowski space and we now extend this work to the space exterior to a 
non-rotating black hole of mass m and charge e defined by the metric 

ds2 = (1 -7f7) 2m e* dt2 - (1 dr2 - r2 do2 - r2 sin2 8 d42.  
r r  

We first write (1) in covariant form as 

which arises from the variational principle 

(3) 
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Using (3) and taking @ to be a function of r only, we obtain from (4) the radial 
equation 

In this case the variational principle ( 5 )  is equivalent to 

SE = 0, 

where the energy E of the @ field is given by 

E =477J’: [ ( r 2 - 2 m r + e ’ ) ( F ) 2 + f ( 0 ) r 2 ]  dr, 

and where r+ = m + J ( m 2  - e2) (e2 C m 2 )  is the event horizon of the black hole. 
Writing 

and 
m 

12 = I, f(a>r2 dr 

so that 

E = 4T(11+ 1 2 )  

we must require that Il and I2 converge. 
We now define 

a,@) = War), 

where a is an arbitrary constant and 
m 

E, = 477 J ( ( r2  - 2mr + e’) +f(a,)r2) dr. 
r+ ( d r )  

Then on changing the variable of integration from r to ar we have 

-- ( r 2 - 2 m a r + e 2 a ) - ( - ) 2 d r + J , ~ + f ( 0 ) $ d r .  1 d@ 
a dr  

Differentiation of (14) with respect to a gives 
m 1 dE, z= j”+ ( -2mr+2e 

00 3 

+ L r  + f ( @ ) (  -g) ff dr-?f(@)l P 
r = a r +  

so that 

1 dzE, =-Il-3I2+G-r:f(@)1 
r=r+  



Letter to the Editor L151 

where 
m 

I3 = [+ (-2mr+2e2) 

Now from (7) we must have 

which gives from (16) 

(17) 

312 = -11 + 4 - r:f(@)l (19) 
r=r+ 

Similarly, differentiating (14) twice with respect to a and setting a = 1 we obtain 

1 
4T 

dzEa 
= I4 - 213 + 211 + 1212+4r:f(@)l 

r=r+ 

+r+(2mr+-2ez)(y)  d@ 1 -r:[f(@)$J d@ 
r r = r +  r = r +  

where 

1 4 = [ y 2 e z ( z )  d@ dr. 

Now using (19) we eliminate Iz from (20) to get 

From (6) we have 

r = r +  r+ 

and substitution of (23) into (22) leads to 

Finally, inserting the expressions for 11, 13 and I4 from (9), (17) and (21), equation (24) 
becomes 

A necessary condition for the solution of (6) to be stable is 

which from (25) is 

d@ W 

(2e2 - rz) (z) dr - r+(mr+ - e ’) (F) I r = r +  3 0. 
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We can now establish a general result. If f(@)30 then from (10) 

I2 3 0. (28) 

We also have from (9) and (17) 

I1 3 0, I3 s 0. 

On substituting (28) and (29) into (19) we see that we must have (since f ( @ ) a O )  

I1 = 13 = f(@) = 0 (30) 
giving that the only solutions of (6) are those where @ is a constant C satisfying 
f(C) = 0. 

We now consider two special cases. Firstly, suppose that 

f f(@) = A @ 3  + p2@, A, p constant. (31) 
Since then f(@) = $ A  O4 + p2@’ is non-negative, (30) gives that (6) has only the trivial 
solution @ = 0. Secondly, suppose that 

if(@) = A (P3 - p ’@ (32) 

f(@)= IA[@2-(CIZ/A)]2 (33) 

@ = f p / J h .  (34) 

which is the form of current interest in gauge theories. Then again 

is non-negative. The only solutions of (6) are therefore the vacuum states 

For compact spatial topologies there may well exist non-trivial stable vacuum solu- 
tions (Avis and Isham 1978). 

Finally, if no restriction is made on the sign of f(@), then we may have non- 
constant, finite energy solutions of (6). If (27) is to hold for such solutions, we must 
have 2e2 - r2  > 0 for some part of the range r+ s r < 00 since the second term in (27) is 
non-positive. This gives d2e > r+ or 

m2> e2>$m2. (35) 
In particular (35) shows that there will be no such solutions in a Schwarzschild 
background space. 

The authors are grateful to Dr C J Isham for helpful discussions. 
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