Non-linear wave equations in a curved background space

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1978 J. Phys. A: Math. Gen. 11 L149
(http://iopscience.iop.org/0305-4470/11/7/003)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 18:54

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Non-linear wave equations in a curved background space 

P M Radmore and G Stephenson<br>Department of Mathematics, Imperial College, London, UK

Received 9 May 1978


#### Abstract

Derrick's theorem concerning the existence of soliton-like solutions of nonlinear scalar wave equations in Minkowski space is extended to the curved background space exterior to a charged, non-rotating black hole.


In a recent series of papers (Rowan and Stephenson, 1976a, b, 1977, Rowan 1977, Radmore 1978) solutions of the Klein-Gordon scalar wave equation in curved background spaces were obtained using Liouville-Green techniques. These solutions were related to the infall of baryons into black holes. We now consider whether it is possible to have soliton-like solutions of the non-linear Klein-Gordon equation containing self-interaction terms in the space exterior to a charged, non-rotating black hole as described by the Reissner-Nordström metric. It is well-known (Derrick 1964) that if $\Phi$ is a scalar field in one time and $D$ space dimensions satisfying the non-linear equation

$$
\begin{equation*}
\frac{\partial^{2} \Phi}{\partial t^{2}}-\nabla^{2} \Phi=-\frac{1}{2} f^{\prime}(\Phi) \tag{1}
\end{equation*}
$$

derivable from the variational principle

$$
\begin{equation*}
\delta \int\left[(\partial \Phi / \partial t)^{2}-(\nabla \Phi)^{2}-f(\Phi)\right] \mathrm{d}^{3} r \mathrm{~d} t=0 \tag{2}
\end{equation*}
$$

then for $D \geqslant 2$ and $f(\Phi) \geqslant 0$ the only non-singular time-independent solutions are the vacuum (or ground) states for which $f(\Phi)=0$. This result, however, was established only in Minkowski space and we now extend this work to the space exterior to a non-rotating black hole of mass $m$ and charge $e$ defined by the metric
$\mathrm{d} s^{2}=\left(1-\frac{2 m}{r}+\frac{e^{2}}{r^{2}}\right) \mathrm{d} t^{2}-\left(1-\frac{2 m}{r}+\frac{e^{2}}{r^{2}}\right)^{-1} \mathrm{~d} r^{2}-r^{2} \mathrm{~d} \theta^{2}-r^{2} \sin ^{2} \theta \mathrm{~d} \phi^{2}$.
We first write (1) in covariant form as

$$
\begin{equation*}
\frac{1}{\sqrt{-g}} \frac{\partial}{\partial x^{i}}\left(\sqrt{-g} g^{i k} \frac{\partial \Phi}{\partial x^{k}}\right)=-\frac{1}{2} f^{\prime}(\Phi) \tag{4}
\end{equation*}
$$

which arises from the variational principle

$$
\begin{equation*}
\delta \int\left(g^{i k} \frac{\partial \Phi}{\partial x^{i}} \frac{\partial \Phi}{\partial x^{k}}-f(\Phi)\right) \sqrt{-g} \mathrm{~d}^{4} x=0 \tag{5}
\end{equation*}
$$

Using (3) and taking $\Phi$ to be a function of $r$ only, we obtain from (4) the radial equation

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(\left(r^{2}-2 m r+e^{2}\right) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)=\frac{1}{2} f^{\prime}(\Phi) \tag{6}
\end{equation*}
$$

In this case the variational principle (5) is equivalent to

$$
\begin{equation*}
\delta E=0 \tag{7}
\end{equation*}
$$

where the energy $E$ of the $\Phi$ field is given by

$$
\begin{equation*}
E=4 \pi \int_{r_{+}}^{\infty}\left[\left(r^{2}-2 m r+e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2}+f(\Phi) r^{2}\right] \mathrm{d} r \tag{8}
\end{equation*}
$$

and where $r_{+}=m+\sqrt{ }\left(m^{2}-e^{2}\right)\left(e^{2} \leqslant m^{2}\right)$ is the event horizon of the black hole.
Writing

$$
\begin{equation*}
I_{1}=\int_{r_{+}}^{\infty}\left(r^{2}-2 m r+e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{2}=\int_{r_{+}}^{\infty} f(\Phi) r^{2} \mathrm{~d} r \tag{10}
\end{equation*}
$$

so that

$$
\begin{equation*}
E=4 \pi\left(I_{1}+I_{2}\right) \tag{11}
\end{equation*}
$$

we must require that $I_{1}$ and $I_{2}$ converge.
We now define

$$
\begin{equation*}
\Phi_{\alpha}(r)=\Phi(\alpha r) \tag{12}
\end{equation*}
$$

where $\alpha$ is an arbitrary constant and

$$
\begin{equation*}
E_{\alpha}=4 \pi \int_{r_{+}}^{\infty}\left(\left(r^{2}-2 m r+e^{2}\right)\left(\frac{\mathrm{d} \Phi_{\alpha}}{\mathrm{d} r}\right)^{2}+f\left(\Phi_{\alpha}\right) r^{2}\right) \mathrm{d} r \tag{13}
\end{equation*}
$$

Then on changing the variable of integration from $r$ to $\alpha r$ we have

$$
\begin{equation*}
\frac{E_{\alpha}}{4 \pi}=\int_{\alpha r_{+}}^{\infty}\left(r^{2}-2 m \alpha r+e^{2} \alpha\right) \frac{1}{\alpha}\left(\frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r+\int_{\alpha r_{+}}^{\infty} f(\Phi) \frac{r^{2}}{\alpha^{3}} \mathrm{~d} r . \tag{14}
\end{equation*}
$$

Differentiation of (14) with respect to $\alpha$ gives

$$
\begin{align*}
\frac{1}{4 \pi} \frac{\mathrm{~d} E_{\alpha}}{\mathrm{d} \alpha}=\int_{\alpha r_{+}}^{\infty} & \left(-2 m r+2 e^{2} \alpha^{2}\right) \frac{1}{\alpha}\left(\frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r+\int_{\alpha r_{+}}^{\infty}\left(r^{2}-2 m \alpha r+e^{2} \alpha^{2}\right)\left(-\frac{1}{\alpha^{2}}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r \\
& +\int_{\alpha r_{+}}^{\infty} f(\Phi)\left(-\frac{3 r^{2}}{\alpha^{4}}\right) \mathrm{d} r-\left.\frac{r_{+}^{3}}{\alpha} f(\Phi)\right|_{r=\alpha r_{+}} \tag{15}
\end{align*}
$$

so that

$$
\begin{equation*}
\left.\frac{1}{4 \pi} \frac{\mathrm{~d}^{2} E_{\alpha}}{\mathrm{d} \alpha^{2}}\right|_{\alpha=1}=-I_{1}-3 I_{2}+I_{3}-\left.r_{+}^{3} f(\Phi)\right|_{r=r_{+}} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{3}=\int_{r_{+}}^{\infty}\left(-2 m r+2 e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r . \tag{17}
\end{equation*}
$$

Now from (7) we must have

$$
\begin{equation*}
\left.\frac{\mathrm{d} E_{\alpha}}{\mathrm{d} \alpha}\right|_{\alpha=1}=0 \tag{18}
\end{equation*}
$$

which gives from (16)

$$
\begin{equation*}
3 I_{2}=-I_{1}+I_{3}-\left.r_{+}^{3} f(\Phi)\right|_{r=r_{+}} \tag{19}
\end{equation*}
$$

Similarly, differentiating (14) twice with respect to $\alpha$ and setting $\alpha=1$ we obtain

$$
\begin{align*}
\left.\frac{1}{4 \pi} \frac{\mathrm{~d}^{2} E_{\alpha}}{\mathrm{d} \alpha^{2}}\right|_{\alpha=1} & =I_{4}-2 I_{3}+2 I_{1}+12 I_{2}+\left.4 r_{+}^{3} f(\Phi)\right|_{r=r_{+}} \\
& +\left.r_{+}\left(2 m r_{+}-2 e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2}\right|_{r=r_{+}}-r_{+}^{4}\left[f^{\prime}(\Phi) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right]_{r=r_{+}} \tag{20}
\end{align*}
$$

where

$$
\begin{equation*}
I_{4}=\int_{r_{+}}^{\infty} 2 e^{2}\left(\frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r \tag{21}
\end{equation*}
$$

Now using (19) we eliminate $I_{2}$ from (20) to get
$\left.\frac{1}{4 \pi} \frac{\mathrm{~d}^{2} E_{\alpha}}{\mathrm{d} \alpha^{2}}\right|_{\alpha=1}=I_{4}+2 I_{3}-2 I_{1}+\left.r_{+}\left(2 m r_{+}-2 e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{d} r}\right)^{2}\right|_{r=r_{+}}-r_{+}^{4}\left[f^{\prime}(\Phi) \frac{\mathrm{d} \Phi}{\mathrm{d} r}\right]_{r=r_{+}}$.
From (6) we have

$$
\begin{equation*}
\left[f^{\prime}(\Phi) \frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right]_{r=r_{+}}=\left.\frac{4\left(r_{+}-m\right)}{r_{+}^{2}}\left(\frac{\mathrm{~d} \Phi}{\mathrm{~d} r}\right)^{2}\right|_{r=r_{+}} \tag{23}
\end{equation*}
$$

and substitution of (23) into (22) leads to

$$
\begin{equation*}
\left.\frac{1}{4 \pi} \frac{\mathrm{~d}^{2} E_{\alpha}}{\mathrm{d} \alpha^{2}}\right|_{\alpha=1}=I_{4}+2 I_{3}-2 I_{1}-\left.2 r_{+}\left(m r_{+}-e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2}\right|_{r=r_{+}} \tag{24}
\end{equation*}
$$

Finally, inserting the expressions for $I_{1}, I_{3}$ and $I_{4}$ from (9), (17) and (21), equation (24) becomes

$$
\begin{equation*}
\left.\frac{1}{8 \pi} \frac{\mathrm{~d}^{2} E_{\alpha}}{\mathrm{d} \alpha^{2}}\right|_{\alpha=1}=\int_{r_{+}}^{\infty}\left(2 e^{2}-r^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r-\left.r_{+}\left(m r_{+}-e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2}\right|_{r=r_{+}} \tag{25}
\end{equation*}
$$

A necessary condition for the solution of (6) to be stable is

$$
\begin{equation*}
\left.\frac{\mathrm{d}^{2} E_{\alpha}}{\mathrm{d} \alpha^{2}}\right|_{\alpha=1} \geqslant 0 \tag{26}
\end{equation*}
$$

which from (25) is

$$
\begin{equation*}
\int_{r_{+}}^{\infty}\left(2 e^{2}-r^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2} \mathrm{~d} r-\left.r_{+}\left(m r_{+}-e^{2}\right)\left(\frac{\mathrm{d} \Phi}{\mathrm{~d} r}\right)^{2}\right|_{r=r_{+}} \geqslant 0 . \tag{27}
\end{equation*}
$$

We can now establish a general result. If $f(\Phi) \geqslant 0$ then from (10)

$$
\begin{equation*}
I_{2} \geqslant 0 . \tag{28}
\end{equation*}
$$

We also have from (9) and (17)

$$
\begin{equation*}
I_{1} \geqslant 0, \quad I_{3} \leqslant 0 . \tag{29}
\end{equation*}
$$

On substituting (28) and (29) into (19) we see that we must have (since $f(\Phi) \geqslant 0$ )

$$
\begin{equation*}
I_{1}=I_{3}=f(\Phi)=0 \tag{30}
\end{equation*}
$$

giving that the only solutions of (6) are those where $\Phi$ is a constant $C$ satisfying $f(C)=0$.

We now consider two special cases. Firstly, suppose that

$$
\begin{equation*}
\frac{1}{2} f^{\prime}(\Phi)=\lambda \Phi^{3}+\mu^{2} \Phi, \quad \lambda, \mu \text { constant. } \tag{31}
\end{equation*}
$$

Since then $f(\Phi)=\frac{1}{2} \lambda \Phi^{4}+\mu^{2} \Phi^{2}$ is non-negative, (30) gives that (6) has only the trivial solution $\Phi=0$. Secondly, suppose that

$$
\begin{equation*}
\frac{1}{2} f^{\prime}(\Phi)=\lambda \Phi^{3}-\mu^{2} \Phi \tag{3}
\end{equation*}
$$

which is the form of current interest in gauge theories. Then again

$$
\begin{equation*}
f(\Phi)=\frac{1}{2} \lambda\left[\Phi^{2}-\left(\mu^{-2} / \lambda\right)\right]^{2} \tag{33}
\end{equation*}
$$

is non-negative. The only solutions of (6) are therefore the vacuum states

$$
\begin{equation*}
\Phi= \pm \mu / \sqrt{ } \lambda . \tag{34}
\end{equation*}
$$

For compact spatial topologies there may well exist non-trivial stable vacuum solutions (Avis and Isham 1978).

Finally, if no restriction is made on the sign of $f(\Phi)$, then we may have nonconstant, finite energy solutions of (6). If (27) is to hold for such solutions, we must have $2 e^{2}-r^{2}>0$ for some part of the range $r_{+} \leqslant r<\infty$ since the second term in (27) is non-positive. This gives $\sqrt{2} e>r_{+}$or

$$
\begin{equation*}
m^{2}>e^{2}>\frac{8}{9} m^{2} . \tag{35}
\end{equation*}
$$

In particular (35) shows that there will be no such solutions in a Schwarzschild background space.

The authors are grateful to Dr C J Isham for helpful discussions.

## References

Avis S J and Isham C J 1978 Vacuum solutions for a twisted scalar field Imperial College preprint
Derrick G H 1964 J. Math. Phys. 51252
Radmore P M 1978 J. Phys. A: Math. Gen. 111105
Rowan D J 1977 J. Phys A: Math. Gen. 101105
Rowan D J and Stephenson G 1976a J. Phys. A: Math. Gen. 91261
_- 1976b J. Phys. A: Math. Gen. 91631

- 1977 J. Phys. A: Math. Gen. 1015

