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LETTER TO THE EDITOR

Non-linear wave equations in a curved background space

P M Radmore and G Stephenson
Department of Mathematics, Imperial College, London, UK

Received 9 May 1978

Abstract. Derrick’s theorem concerning the existence of soliton-like solutions of non-
linear scalar wave equations in Minkowski space is extended to the curved background
space exterior to a charged, non-rotating black hole.

In a recent series of papers (Rowan and Stephenson, 1976a, b, 1977, Rowan 1977,
Radmore 1978) solutions of the Klein-Gordon scalar wave equation in curved back-
ground spaces were obtained using Liouville-Green techniques. These solutions were
related to the infall of baryons into black holes. We now consider whether it is
possible to have soliton-like solutions of the non-linear Klein—-Gordon equation
containing self-interaction terms in the space exterior to a charged, non-rotating black
hole as described by the Reissner-Nordstrom metric. It is well-known (Derrick 1964)
that if @ is a scalar field in one time and D space dimensions satisfying the non-linear
equation

2

P -Vo=-47(®) M

derivable from the variational principle

& j. [(0®/at) — (V) — f(®)] d°r dt =0 )

then for D =2 and f(®)=0 the only non-singular time-independent solutions are the
vacuum (or ground) states for which f(®)=0. This result, however, was established
only in Minkowski space and we now extend this work to the space exterior to a
non-rotating black hole of mass m and charge e defined by the metric

2, -1

ds?= (1 —2—’f+" ) dt —(1 -27’"#;’7) dr* =1 d6% - sin’ 6 dg>. 3)
We first write (1) in covariant form as
1 a (\/’_— ik a¢)
NP g b (@) “)
which arises from the variational principle
i 0D oD
5I(g"§——f(q>))~/—d“x 0. )
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Using (3) and taking ® to be a function of r only, we obtain from (4) the radial

equation

1d

dd
p g;((rz— 2mr+e2)E-) =1 f(®).

In this case the variational principle (5) is equivalent to
6E =0,

where the energy E of the ® field is given by

T2 2, (dP)\2 2

E=41TJ' [(r —2mr+e )<Er—) +f(@)r ]dr,

and where r, = m +v(m?—e?) (¢ < m?) is the event horizon of the black hole.
Writing
® dd\?
_ 2_ 2, (AP

I= L (r'=2mr+e )( dr) dr
and

L= j F(D) dr
so that

E=a4n(l,+1)

we must require that I, and I, converge.
We now define

Pu(r)=P(ar),

where « is an arbitrary constant and

E,=4n J ((r2 —2mr+e?) (dq)“
r+ d"

Then on changing the variable of integration from r to ar we have

)2+ (s )r2> dr.

© 2 © 2
E“—:J (r2—-2mar+e2a)l(@) dr+I f(d))r—a dr.
a7 o, a\dr ar. a

Diflerentiation of (14) with respect to a gives

©)

M

®

©

(10)

(i1

(12)

(13)

(14)

1 dE, (7 2 o 2
1 dE =J (—2mr+2e2012 al_!(d;()) dr+J. (P =2mar +e’a’ (-—1—)(@) dr

47 da dr dr

2
a

o[ rox(-2) ar-Z o

ary

so that
1 &,
47 da’
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(15)
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where
® dd\?
13=j (~2mr+2¢5(57) 17
re dr
Now from (7) we must have
dE,
- =0 18
o (18)

which gives from (16)

3L=—I+1—rf(®) (19)

r=r,

Similarly, differentiating (14) twice with respect to a and setting @ = 1 we obtain

2
1d E; =I,— 21+ 2L, + 12, + 473 f(D)
477' da a=1 r=ry
ddy? do
+r+(2mr+—2e2)(gr—) r=r+—ri [f’(tb) —d7],=,+ 20)
where
«© 2
14=J' 2e2(@) dr. 21)
- dr
Now using (19) we eliminate I, from (20) to get
1 d’E, ) (dcp)z . [ dcb]
—_— = + - + - - =TI i i .
aw da’l._, I+20,-2L+r.(2mr.—2e%) ar) o ri| f(P) ar .. 22)
From (6) we have
d® 4(r.—m)dd\?
o] -
[f( )dr r=re re dr/ |-, 23)
and substitution of (23) into (22) leads to
2 2
L % =L, +20,=21,=2r,(mr,— e2)<@> (24)
47 da’ 141 dr/ |-,
Finally, inserting the expressions for I, I3 and I, from (9), (17) and (21), equation (24)
becomes
1 d&’E, r s 2 (dcb)z ) (dcb)2
87 da’ oo ) Qe =19 i dr=r.(mr.—e”) ar) |- (25)
A necessary condition for the solution of (6) to be stable is
d’E,
= =0 (26)
da a=1
which from (25) is
= ddy 2 dod\2
L (2e2—r2)(d—r) dr—r+(mr+—-e2)(—(;) >0, @7)

r=ry
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We can now establish a general result. If f(®)=0 then from (10)

L=0. (28)
We also have from (9) and (17)

I,=0, I,=<0. (29)
On substituting (28) and (29) into (19) we see that we must have (since f($)=0)

L=L=f(®)=0 (30)
giving that the only solutions of (6) are those where @ is a constant C satisfying
f(€)=0.

We now consider two special cases. Firstly, suppose that
LF(@)=AD°+u°®, A, 4 constant. 31

Since then f(®)= 1A ®*+ 1 *®? is non-negative, (30) gives that (6) has only the trivial
solution ® = 0. Secondly, suppose that

H@)=20-u’e (32)
which is the form of current interest in gauge theories. Then again

f@)=3A[® - /M) (33)
is non-negative. The only solutions of (6) are therefore the vacuum states

®=zxu/A. (34)

For compact spatial topologies there may well exist non-trivial stable vacuum solu-
tions (Avis and Isham 1978).

Finally, if no restriction is made on the sign of f(®), then we may have non-
constant, finite energy solutions of (6). If (27) is to hold for such solutions, we must
have 2e>—r*> 0 for some part of the range r. < < since the second term in (27) is
non-positive. This gives V2e>r, or

m?>e*>8m?. (35)

In particular (35) shows that there will be no such solutions in a Schwarzschild
background space.

The authors are grateful to Dr C J Isham for helpful discussions.
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